Измеримые функции - definizione. Che cos'è Измеримые функции
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Измеримые функции - definizione

Измеримые функции; Измеряемая функция

Измеримые функции         
(в первоначальном понимании)

функции f (x), обладающие тем свойством, что для любого t множество Et точек х, для которых f (x) ≤ t, измеримо по Лебегу (см. Мера множества). Это определение И. ф. принадлежит французскому математику А. Лебегу. Сумма, разность, произведение и частное двух И. ф., а также предел последовательности И. ф. снова являются И. ф. Таким образом, основные операции алгебры и анализа не выводят за пределы совокупности И. ф. Русские и советские математики внесли большой вклад в изучение И. ф. (Д. Ф. Егоров, Н. Н. Лузин и их ученики). Лузин доказал, что функция измерима в том и только том случае, если она может быть сделана непрерывной после изменения её значений на множестве сколь угодно малой меры. Это так называемое С-свойство И. ф.

В абстрактной теории меры функция f (x) называется И. ф. по отношению к какой-либо мере μ, если множество Et входит в область определения меры μ. В современной теории вероятностей И. ф. выступают под названием случайных величин (см. Вероятностей теория).

Измеримая функция         
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
сужение         
СУЖ'ЕНИЕ, сужения, мн. нет, ср. Действие и состояние по гл. сузить
-суживать
2 и сузиться
-суживаться
2. Сужение пищевода.

Wikipedia

Измеримая функция

Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.

Che cos'è Измер<font color="red">и</font>мые ф<font color="red">у</font>нкции - definizione